GCSE (9-1) Chemistry A (Gateway) Unit **J248F/01**: Foundation Tier – Paper 1 General Certificate of Secondary Education Mark Scheme for June 2018 OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills. It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society. This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced. All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated. Mark schemes should be read in conjunction with the published question papers and the report on the examination. © OCR 2018 #### Annotations available in RM Assessor | Annotation | Meaning | |------------|--| | ✓ | Correct response | | × | Incorrect response | | ^ | Omission mark | | BOD | Benefit of doubt given | | CON | Contradiction | | RE | Rounding error | | SF | Error in number of significant figures | | ECF | Error carried forward | | L1 | Level 1 | | L2 | Level 2 | | L3 | Level 3 | | NBOD | Benefit of doubt not given | | SEEN | Noted but no credit given | | I | Ignore | Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions). | Annotation | Meaning | |--------------|---| | I | alternative and acceptable answers for the same marking point | | √ | Separates marking points | | DO NOT ALLOW | Answers which are not worthy of credit | | IGNORE | Statements which are irrelevant | | ALLOW | Answers that can be accepted | | () | Words which are not essential to gain credit | | _ | Underlined words must be present in answer to score a mark | | ECF | Error carried forward | | AW | Alternative wording | | ORA | Or reverse argument | #### **Subject-specific Marking Instructions** #### **INTRODUCTION** Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes: - the specification, especially the assessment objectives - the question paper - the mark scheme. You should ensure that you have copies of these materials. You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**. Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader. The breakdown of Assessment Objectives for GCSE (9-1) in Chemistry A: | | Assessment Objective | |--------|--| | A01 | Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures. | | AO1.1 | Demonstrate knowledge and understanding of scientific ideas. | | AO1.2 | Demonstrate knowledge and understanding of scientific techniques and procedures. | | AO2 | Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures. | | AO2.1 | Apply knowledge and understanding of scientific ideas. | | AO2.2 | Apply knowledge and understanding of scientific enquiry, techniques and procedures. | | AO3 | Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. | | AO3.1 | Analyse information and ideas to interpret and evaluate. | | AO3.1a | Analyse information and ideas to interpret. | | AO3.1b | Analyse information and ideas to evaluate. | | AO3.2 | Analyse information and ideas to make judgements and draw conclusions. | | AO3.2a | Analyse information and ideas to make judgements. | | AO3.2b | Analyse information and ideas to draw conclusions. | | AO3.3 | Analyse information and ideas to develop and improve experimental procedures. | | AO3.3a | Analyse information and ideas to develop experimental procedures. | | AO3.3b | Analyse information and ideas to improve experimental procedures. | J248/01 Mark Scheme June 2018 For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined. | Quest | tion | Answer | Marks | AO
element | Guidance | |-------|------|--------|-------|---------------|----------| | 1 | A 🗸 | | 1 | 1.2 | ALLOW 1 | | 2 | A✓ | | 1 | 1.1 | | | 3 | D ✓ | | 1 | 1.1 | | | 4 | D ✓ | | 1 | 1.1 | | | 5 | C √ | | 1 | 1.1 | | | 6 | B√ | | 1 | 2.1 | | | 7 | A ✓ | | 1 | 2.1 | | | 8 | D ✓ | | 1 | 2.1 | | | 9 | C √ | | 1 | 1.1 | | | 10 | C √ | | 1 | 2.1 | ALLOW 4 | | 11 | B√ | | 1 | 2.1 | ALLOW 2 | | 12 | A ✓ | | 1 | 1.2 | | | 13 | C √ | | 1 | 1.1 | | | 14 | B√ | | 1 | 1.1 | | | 15 | C √ | | 1 | 1.1 | | | C | uesti | on | | | Answe | er | | Marks | AO
element | Guidance | |----|--------|------|------------|----------------------------------|--------------------------------|--------------------------------|------------------|-------|---------------|-------------------| | 16 | 16 (a) | | | | | | | 3 | 3 x 2.2 | | | | | | Reaction | Temperature
at start
in °C | Temperature
at end
in °C | Temperature
change
in °C | Type of reaction | | | | | | | | A | 20 | 25 | (+) 5 | exothermic | | | | | | | | В | 18 | 10 | - 8 | endothermic ✓ | | | | | | | | С | 21 | 35 | (+) 14 | exothermic √ | | | | | | | | D | 20 | 20 | 0 | | | | | | | | | Temperatu | ire change in | BOTH reac | tions A and [|) ✓ | | | | | | (b) | | C ✓ | | | | | 1 | 2.2 | ecf on ΔT | | | (c) | (i) | 100 (kJ) ✓ | | | | | 1 | 2.2 | ALLOW -100 | | | | (ii) | 50 (kJ) ✓ | | | | | 1 | 2.2 | | | Q | uestion | | Answer | Marks | AO
element
2 x 2.1 | Guidance | |----|---|--|-----------------|-------|--------------------------|--| | 17 | (a) | Element | Number of atoms | 2 | | | | | | С | 4 | 1 | | | | | | Н | 6 | 1 | | | | | | 0 | 4 | 1 | | | | | | All correct ✓✓ One or two correct ✓ | | | | | | | (b) | C ₂ H ₃ O ₂ ✓ | | 1 | 2.1 | Order of atomic symbols unimportant e.g. ALLOW H ₃ C ₂ O ₂ | | | (c) | Solid ✓ | | 2 | 2 x 2.1 | | | | Idea that melting point is above 25°C ✓ | | | | | ALLOW not reached 184 °C/melting point; IGNORE boiling point Independent marking points | PMT | | | | man v | Guile 2010 | | | |----|----------|------|---|------------|------------|--| | Q | Question | | Answer | Marks | AO element | Guidance | | 18 | 8 (a) | | Salt is soluble or dissolves in water (so filtration will not work) ✓ | 2 | 2 x 3.3b | ALLOW forms (salt) solution | | | | | Distillation ✓ | | | IGNORE fractional ALLOW evaporate and condense | | | (b) | | Fractional distillation ✓ | 2 | 2 x 3.2b | | | | | | as liquids have different boiling points ✓ | | | ALLOW higher level answers in terms of intermolecular forces | | | (c) | (i) | Consists of just one element or substance ✓ | 1 | 1.2 | | | | | (ii) | No (no mark) | 3 | | | | | | | pure samples do not have a range of mpt ✓ | | 2 x 3.2a | ALLOW pure samples have single mpt/impure samples have a range of mpts/ impure samples have more than one mpt/4 has a range of mpt | | | | | Sample 4 has range higher than 120°C ✓ | | | | | | | | Any one from: Pure samples cannot have melting point above 120°C ✓ | | 1 x 3.2b | ALLOW sample 4 has higher melting point so cannot be pure/pure sample cannot have a higher mpt./impure sample has lower mpt than 120 °C | | | | | Sample 2 is likely to be most pure ✓ | | | | | | | | | | | IGNORE boiling point | | Q | Question | | Answer | | AO element | Guidance | |----|----------|------|---|---|------------|---| | 19 | (a) | | Solid ✓ | | 1.2 | | | | (b) | | 1.76 ✓ | 1 | 2.2 | | | | (c) | | No (no mark) | 2 | 2 x 3.1b | | | | | | 20g calcium carbonate will make 11.2g of calcium oxide ✓ and 8.8g of carbon dioxide ✓ | | | ALLOW idea that he has the numbers reversed for both marks ALLOW idea that mass of CO ₂ is always lower than CaO for one mark ora | | | (d) | (i) | 40.3 (g) ✓ | 1 | 2.2 | ALLOW 40 | | | | (ii) | Correct idea of 48.6 + 32 = 80.6 ✓ | 2 | 1 x 2.2 | ALLOW 48 + 32 = 80 (must use data) | | | | | (demonstrates law of conservation of mass) since both sides are equal ✓ | | 1 x 3.2a | MAX 1 for full argument using 64.6/64 | | J248/01 | Mark Scheme | June 2018 | |---------|-------------|-----------| | | | | | Q | Question | | Answer | | | | Marks | AO element | Guidance | |----|----------|--|---------------------------------------|------------------|--------------------------|-------------------|---------|------------------|--| | 20 | (a) | | Points plotted co | orrectly < | | 2 | 2 x 2.2 | ALLOW ± ½ square | | | | | | Straight line thro | ugh all point | s except poin | it at 6 minutes ✓ | | | | | | (b) | | Point on graph at 6 minutes circled ✓ | | | | | 2.2 | | | | (c) | | OH⁻ and SO₄²- ✓ | | | | 1 | 2.2 | BOTH REQUIRED | | | (d) | | Molten
salt | Formula | Product
at
cathode | Product at anode | 2 | 2 x 2.2 | | | | | | potassium
chloride | KC1 | potassium | chlorine ✓ | | | DO NOT ALLOW chloride/Cl/Cl ⁻ ALLOW Cl ₂ | | | | | lead
iodide | PbI ₂ | lead √ | iodine | | | ALLOW Pb | | | | | | | | | | | DO NOT ALLOW Pb ²⁺ | | Q | uestion | Answer | | AO element | Guidance | | |----|---------|---|---|------------|---|--| | 21 | (a) | DIAMOND Any two from: Transparent ✓ Does not conduct electricity ✓ High melting point ✓ High boiling point ✓ GRAPHITE Any two from: Good electrical conductor ✓ Soft ✓ | 4 | 4 x 1.1 | ALLOW higher level answers to explain the property e.g has delocalised electrons to explain conduction has no delocalised electrons to explain non-conduction strong (covalent) bonds throughout structure to explain high mpt/bpt layers with weak force between to explain soft/brittle | | | | (b) | High melting point ✓ High boiling point ✓ (Dark) grey ✓ Covalent ✓ | 1 | 1.1 | ALLOW brittle ALLOW black | | | | (c) | Any two from: Graphite has a layered structure ✓ Weak forces between layers ✓ (which) allow layers to slide (over each other) ✓ | 2 | 2 x 1.1 | ALLOW in sheets/in layers ALLOW weak bonds between layers IGNORE intermolecular forces | | | Q | uestio | n Answer | Marks | AO element | Guidance | | | |----|--------|--|-------|------------|--|--|--| | 22 | (a) | Electrons ✓ | 1 | 1.1 | | | | | | (b) | Protons AND neutrons ✓ | 1 | 1.1 | BOTH REQUIRED | | | | | (c) | Idea that the relative mass of protons and neutrons is 1 ✓ | 2 | 2 x 1.1 | ALLOW protons and neutrons have (significant) mass/more mass than electrons DO NOT ALLOW grams | | | | | | and that of electrons is 0.0005 or very small (in comparison) ✓ | | | ALLOW mass of electron is negligible Max 1 if g used | | | | | (d) | Any two from:
Isotopes ✓ | 2 | 2 x 1.1 | | | | | | | same number of protons/ same atomic number ✓ | | | DO NOT ALLOW different number of electrons | | | | | | different numbers of neutrons/ different mass numbers ✓ | | | ALLOW atomic mass DO NOT ALLOW relative atomic mass | | | | Q | Question | | Answer | | AO element | Guidance | | | |----|----------|-----|--|---|------------|---|--|--| | 23 | 23 (a) | | Water ✓ | | 1.2 | | | | | | (b) | | Idea that different inks move across the paper at different speeds ✓ | | 1.2 | ALLOW inks have different solubilities (in water) / different adsorption (to paper) ALLOW different Rf values | | | | | (c) | (i) | FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.50 award 2 marks | 2 | | | | | | | | | 2.6 and 5.2 \checkmark 2.6/5.2 = 0.5(0) \checkmark | | 2.2
2.2 | Ecf IGNORE units | | | | | (ii) | | A✓ | 2 | 2 x 2.2 | ALLOW green | | | | | | | Has same pattern as ink from cheque ✓ | | | same R _f values | | | PMT | Question | Answer | | AO element | Guidance | | | |----------|---|---|---------------------------------|--|--|--| | 24 * | Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Analyses the information to identify the type of bonding present in all three substances AND provides a correct explanation for two of them AND a basic explanation for the third There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Analyses the information to identify the type of bonding present in two of the substances AND provides a correct explanation for one of them / a basic explanation for both of them OR Analyses the information to identify the type of bonding present in two of the substances AND provides a basic explanation for two of them OR Analyses the information to identify the type of bonding present in three of the substances AND provides a basic explanation for one of them There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. | 6 | 2 x 2.1
2 x 3.1a
2 x 3.2b | AO3.2b Analyses information to draw conclusions about the three substances substance A is covalently bonded substance B is a metal / has metallic bonding substance C is an ionic compound AO3.1a Analyses information to interpret the type of bonding present in all three substances substance A has a low melting point and boiling point so is covalent substance A does not conduct electricity so is likely to be covalent substance B has high melting point and boiling point and is a good conductor so is a metal or has metallic bonding substance C has a high melting point and boiling point but does not conduct as a solid so is likely to be an ionic compound substance C does not conduct as a solid but does when molten so is likely to be an ionic compound AO2.1 Applies knowledge and understanding to identify information about the three substances substance A has a low melting point and boiling point substance B has high melting point and boiling point and is a good conductor substance C has a high melting point and boiling point and is a good conductor substance C has a high melting point and boiling point and is a good conductor substance C has a high melting point and boiling point but does not conduct as a solid | | | | Question | Answer | Marks | AO element | Guidance | |----------|--|-------|------------|--| | | Level 1 (1–2 marks) Analyses the information to identify the type of bonding present in one of the substances AND provides a basic explanation | | | substance C does not conduct as a solid but does when molten | | | There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. | | | | | Qı | Question | | Answer | | AO
element | Guidance | | | |----|----------|------|--|---|---------------|--|--|--| | 25 | (a) | (i) | Particles close together / particles compact /particles already touching / particles tightly packed / AW ✓ | 1 | 1.1 | ALLOW idea of particles with no spaces between them ALLOW any type of particles Mark can be awarded from a diagram IGNORE particles are in fixed positions IGNORE particles are in a regular arrangement / particles are in a lattice IGNORE intermolecular forces | | | | | (a) | (ii) | Any three from: Particles in a solid are in fixed positions ✓ Particles in a solid vibrate ✓ Particles in a liquid can move (past each other) ✓ as forces between particles in a liquid are less than in a solid ✓ | 3 | 3 x 1.1 | ALLOW particles in a solid cannot move (past each other) IGNORE solid cannot flow, but ALLOW particles in a solid cannot flow IGNORE particles move around on the spot IGNORE liquid can flow, but ALLOW particles in a liquid can flow ALLOW liquid particles have enough energy to overcome attractions (between particles) DO NOT ALLOW no forces between particles IGNORE intermolecular forces | | | PMT | J248/01
Question | | м | | June 2018 | | |---------------------|-------|---|-------|------------|---| | | | Answer | Marks | AO element | Guidance | | (a) | (iii) | Any two from: | 2 | 2 x 1.1 | ALLOW any type of particles | | | | Particles are moving quickly (in all directions) ✓ Particles are far apart ✓ | | | ALLOW particles can move freely or randomly ALLOW M2 from a diagram showing no particles | | | | Particles spread out ✓ | | | touching | | | | Weak forces between the particles ✓ | | | IGNORE intermolecular forces IGNORE no forces between particles | | (b) | | Mg + $2H_2O \rightarrow Mg(OH)_2 + H_2$ Correct formulae \checkmark | 2 | 1.1 | Balancing mark is conditional on correct formulae ALLOW = or ⇒ instead of → | | | | Balancing ✓ | | 2.2 | DO NOT ALLOW and or & instead of + ALLOW any correct multiples including fractions | | | | | | | e.g. 2Mg + $4H_2O \rightarrow 2Mg(OH)_2 + 2H_2$ | | | | | | | ALLOW one mark for correct equation with minor errors in case, subscript or superscript e.g. MG + $2H^2O \rightarrow 2Mg(OH)2 + H_2$ | | | | | | | IGNORE state symbols | | (c) | | 148.3 ✓ | 1 | 2.2 | ALLOW 148 | | | | | | | | | Qu | estion | Answer | | | Marks | AO
element | Guidance | |----|---|---|-------------------------|------------------|-------|---------------|---| | 26 | (a) | Any four from: Titration ✓ Put acid in burette ✓ Pipette (a known volume of) sodium hydroxide into flask ✓ Use a (named) indicator / use of a pH meter ✓ Add acid to sodium hydroxide until colour of indicator changes ✓ Repeat (to get an accurate value) ✓ Repeat again with no indicator ✓ Evaporate (off the water) / crystallise ✓ | | | | 4 x 3.3a | ALLOW other methods involving adding acid to sodium hydroxide solution using the principles outlined on the LHS eg ALLOW mix or react acid with alkali ALLOW alkali in burette ALLOW acid in flask | | | (b) | NaOH + HC $l \rightarrow NaCl + H_2O \checkmark$ | | | 1 | 2.2 | ALLOW = or ≠ instead of → DO NOT ALLOW and or & instead of + ALLOW any correct multiples including fractions IGNORE any state symbols | | | (c) | Acid used | Other starting material | Salt made | 3 | 3 x 2.2 | ALLOW correct formulae | | | | sulfuric acid | copper oxide | copper sulfate ✓ | | | | | | | nitric acid ✓ | zinc carbonate | zinc nitrate | | | | | | hydrochloric acid magnesium oxide/magnesium hydroxide /magnesium carbonate /magnesium ✓ | | | | | | | | | (d) Neutralisation ✓ | | | 1 | 2.2 | | | **OCR (Oxford Cambridge and RSA Examinations)** The Triangle Building **Shaftesbury Road** Cambridge CB2 8EA #### **OCR Customer Contact Centre** #### **Education and Learning** Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk #### www.ocr.org.uk For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 **OCR** is an exempt Charity **OCR (Oxford Cambridge and RSA Examinations)** **Head office** Telephone: 01223 552552 Facsimile: 01223 552553